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Positivity of Entropy Production in the 
Presence of a Random Thermostat 

D a v i d  R u e l l e  ~ 

Received Maj, 13, 1995 

We study nonequilibrium statistical mechanics in the presence of a thermostat  
acting by random Ibrces, and propose a formula for the rate of entropy produc- 
tion e(/t) in a state tt. When it is a natural nonequilibrium steady state we show 
that e(it)>~ 0, and sometimes we can prove e ( p ) >  0. 

KEY WORDS: Entropy production; nonequilibrium stationary state; non- 
equilibrium statistical mechanics: random dynamics; SRB state; thermostat.  

PHYSICAL INTRODUCTION 

The production of entropy in nonequilibrium statistical mechanics was 
analyzed in various settings in ref. 19. Here we continue this analysis by 
studying the role of a heat bath, and its idealization by random external 
forces. 

As discussed in ref. 19, we maintain a system outside of equilibrium by 
external forces which, in general, do not keep the energy constant. If no 
precaution is taken, the time evolution is then represented by an unbounded 
orbit in the noncompact phase space ~5 a of the system, i.e., the energy grows 
indefinitely. Physically, this heating up is prevented by coupling the system 
to a thermostat, or heat bath. The energy changes are diluted in the large 
heat bath, so that the system keeps a bounded energy. 

If ,(2 is "the phase space of the heat bath, we thus assume a deter- 
ministic time evolution in s • ,5 p, and we are interested in its projection in 
5 a. A priori, however, the projected time evolution in ~ has no simple 
description because the mutual interactions of the system and the heat bath 
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936 Ruelle 

cannot be disentangled. (See, however, Jak~i6 and PilletJV~). One is thus led 
to considering a simplified model where the heat bath acts on the system, 
but the system does not act back on the heat bath. We shall return in a 
moment to the physical meaning of this simplification. 

The previous paper ~ ~91 and the present one are in the line of a renewed 
attack on the problems of nonequilibrium mechanics by using the ideas and 
methods of differentiable mechanics. This involves in particular the impor- 
tant work of Gallavotti and Cohen, 15~ Chernov et al., ~4) and a number of 
other papers referred to in ref. 19. 

Random Dynamics 

Our simplified model of a system coupled with a heat bath will be 
described by a random dynamical system (with discrete time for simplicity). 
The heat bath itself is described by a probability space (s P), with an 
invertible, measurable, P-preserving map r describing time evolution; P is 
assumed to be r-ergodic. (Further technical assumptions will be made 
later.) 

For each a~e~,  a diffeomorphism f, ,  of the smooth (noncompact) 
manifold ~ is given, and the time evolution on s x ~ is the skew-product 
transformation f on s x cj  defined by 

f(o), x) = (rw, f, , ,x) 

(Assumptions of smoothness o f f , ,  and measurability of co F---~f,,, are dis- 
cussed later. ) 

Thermostatic Action of Random Forces 

It is easy to understand qualitatively how a heat bath prevents the 
heating up of a system. Suppose, for example, that the system is a gas 
enclosed in a container, and that the thermostatic action of the heat bath 
takes place when the particles of the gas hit the walls of the container. 
Shocks with the wall are not elastic. When a particle hits the wall at very 
high speed, it is released on the average with a lower speed. In this manner 
the energy of the gas is prevented from increasing indefinitely (even though 
there are forces acting on the gas that maintain it outside of equilibrium 
and usually transfer energy to it). 

The above thermostatic mechanism may be translated into the 
language of random dynamical systems. Suppose, for example, that the 
f,,, are independent, identically distributed, and that there is an energy 
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function x~---~E(x) >~0 and cons t an t s /~>0 ,  A >0 ,  ~ > 0 ,  and fie(O, 1) such 
that 

(e~F'~-/~""~) ,,, ~< A if E(x)<~ff~ 

(e~E~.t;""~),,,<~fi e~El'~ if E(x) >/T" 

where ( . . - ) , , ,  is the average over o9. Let Po be a probability measure on ~ ,  
and p ,  the measure obtained from it at time n (i.e., p,,+ t = (f,,P,,) .... where 
f,,p is the direct image of p by f,,). Write 

c,, = f p,,(dx) e "E(') 

and suppose co < +o~; we have then 

f . xE[x} c,,+t= ((f,,p,,)(d.x)),,,e 

= l f (f,,p,,)(dx') e~E~"' I 

/ etJ 

= I p,,(dx) ( e  ~E( i;.,.,-)),, 

<~ Ap,{x: E(x) <~ E} + fi fE~,.~> ~. e~E"' <~ A +tic,, 

Therefore by induction 

A 
c,,..~fi co+ 1 - f i  

which shows that 

f p,(dx) e :'EI'I 

is bounded independently of n. 
In the above example the energy E(x) is unbounded, but states of high 

energy are rarely visited: the system does not heat up. Notice that we are 
not here separating the deterministic forces driving the system outside of 
equilibrium from the random forces associated with the heat bath. 

8 2 2 , 8 6 , 5 - 6 - 3  
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Using a Compact Phase Space 

We have just seen that in the presence of suitable random forces, a 
system rarely comes close to infinity on S .  Physically, this is in agreement 
with the remarkable metastability of systems that are, strictly speaking, 
unstable (like a mixture of oxygen and hydrogen at room temperature). In 
the presence of random forces which prevent heating up of the system we 
might as well physically assume that the phase space ~ is compact. In 
other words we want to modify 5/' and the Ji,, near infinity and replace 
them by a compact manifold M and diffeomorphisms (again denoted by 
f, ,)  of M. Note that this is a physical approximation, not a mathematical 
compactification of .cf. 

The reason for this modification of our setup is one of mathematical 
convenience, namely that the theorems on random dynamical systems 
which we shall use have been proved for compact manifolds. Extensions to 
noncompact manifolds presumably exist, but it does not appear justified to 
spend much effort in proving them at this time. 

Loss of Correlations in the Heat Bath 

Let us briefly return to the difference between a real heat bath and 
random external forces. When a real heat bath interacts with a system, it 
is acted upon by the system, which transfers to it energy and information. 
The transfer of information means that correlations are created between the 
state of the heat bath and that of the system. Such correlations do not exist 
in the case of a random dynamical system, where the time evolution in s 
is independent of the factor ,9 ~ A good heat bath has a short relaxation 
time: correlations diffuse in it quickly, so that the action on the system 
appears random (with a short correlation time) independently of the 
behavior of the system. A random dynamical system is thus an idealization 
of a dynamical system in contact with a good heat bath. Note that the dif- 
fusion and loss of correlations in the heat bath corresponds to an increase 
of the global entropy. More generally, loss of correlations may be viewed 
as the basic physical mechanism leading to increase of entropy and irrever- 
sibility (this fits with the discussion by Lebowitz~m~). Admittedly, we lack 
a detailed physical understanding of how correlations diffuse and are lost 
in a heat bath. In the present paper we bypass this fundamental question 
by using a random dynamical system instead of a realistic heat bath. It is 
physically reasonable to assume that the Je,,,, are independent and identi- 
cally distributed (i.i.d.), but since this assumption is unnecessary and tends 
to confuse the issues, we shall first study the general case. 
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Scope of the Paper 

In Section 1 we review some properties of  r a n d o m  differentiable 
dynamical  systems (without  the i.i.d, assumption).  In Section 2 we obtain 
the formula for the ent ropy product ion,  and study its positivity. In Sec- 
tion 3 we discuss the special i.i.d, case. 

1. ERGODIC THEORY OF RANDOM DYNAMICAL SYSTEMS 

1.1. Assumptions 

Let us fix our  mathemat ical  framework.  2 We consider a r andom 
system consisting of  a probabil i ty space (g ,  P),  a map  ~: C2 ~ / 2  such that  
P is r-ergodic, a compac t  manifold M, and a family ( f , , )  ....  ~2 of dif- 
feomorphisms of  M. To be specific, we make the following standing techni- 
cal assumptions:  

�9 C2 is a Polish space, -~ P is a Borel probabil i ty measure on /2, 
r: ~ ~ g 2  is invertible, r and r -~  are Borel, and P is r- invariant  and 
ergodic. 

�9 M is a compac t  C ~- manifold. 

�9 co ~--,f, ,  is a Borel m a p  .Q---, Diff"(M) (allowed values of  r~> 1 will be 
specified as needed). 

�9 If  J,,, is the Jacobian o f f , ,  with respect to some Riemann metric and 
l(oJ) = sup.,, l log J, , , (x)[ ,  then l e L i(p). 

1.2. Time Entropy 

A Borel map  f :  ~ x M--* s x M is defined by f(co, x) = (rr f , , x )  and 
we denote by 7r: C2 x M ~ / 2  the canonical  projection. We assume that  p is 
an f - invar iant  probabil i ty measure on s x M with projection zrll = P. A dis- 
integration (~,,,) .... ~ of  p then exists (P-a.e. unique) such that  the ~,,, are 
probabil i ty measures on M and 

I.t(do) d x )  = P(&o)/~,,,(dx) 

2 We [bllow here the presentation by Liu] TM which can be consulted Ibr more details and 
references. The special i.i.d, case, which was studied earlier, ~s'13~ will be discussed in Sec- 
tion 3. For further background material see refs. 9 and 15. 

~A topological space 12 is called a Polish space if (a) .(2 is separable, i.e., it contains a coun- 
table dense set, and (b) there is a metric on 12 which defines the topology and fbr which 12 
is complete. Part of the results below would hold without supposing 12 Polish, but this 
assumption (made by Liu ~l'~b) is quite acceptable for our purposes Iwe could in hlct make 
the stronger assumption that 12 is metrizable compact). 
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It is convenient to write f k ( c o ,  x ) = ( f k ) , , , ( X )  [SO that, for instance, 
( f - ' ) , , , = ( f ~ - , , , , )  ' ] .  Let then fl be a finite Borel partition of M, and 

f l ~ s  v f ,7, ' f l  v . . .  v ( ( f " - ' ) , , , ) - '  fl  

If we write 

H t -  R'"q ,,.. .... , .  . . . .  = - ~ p , , , (B)  l o g p , , , ( B )  
IS ~ l{': ' 

the limit 

h(p ,  fl) = lim _1 H ( p  .... tic/j) 
n ~ ~ /*7 

exists and is constant for P-almost all co. The f i b e r  e n t r o p y  is defined by 

h ( p ) =  sup h(p, fl) 

and turns out to coincide with the relative (or conditional) entropy of 
(p, f )  with respect to re: [2 x M--+/2 (for these results see Bogenschiitz ~~ 
and for background the book of Kifer'~). Note that h is a time entropy, 
different from the statistical mechanical entropy S to be discussed later. 

1.3. Lyapunov Exponents and Unstable Manifolds 

Choose a Riemann metric on the tangent bundle T M  (with associated 
distance d on M) and assume that 

f [ l o g  ][T,.f,lj + log + -J /iT,f,,, [ [ ] p ( & o d x ) <  oo 

One may then write 

- oo < i t" ~(o~, x )  < 2~2~(a~, x )  < . . .  < 2 "~ ....... "(co,  x )  < m 

and 

T , . M  = EI  I ~( og, x ) @ . . .  O E c'~ ....... "(oJ, x) 

so that r, the 2 m, and E u~ are Borel, and for p-almost all (o9, x) 

lim -1 log l[ T , . ( f " ) , , ,  ~11 = 2u~( r x) 
It ~ -}-cA" ~l  
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if 0#~eE~n(co ,  x), l~i<.~r(co, x). This is a form of the multiplicative 
ergodic theorem of Oseledec; the 2 m are called Lyapunov exponents, and 
the m ~a = dim E ~n are their multiplicities. We define E"(co, x) to be the sum 
G Era(co, x) extended over those i for which 2~n(co, x ) > 0  (unstable 
space ). 

Suppose now that the f , ,  are C -~ (i.e., r>~2), and that 

I [ log + II f,,,tl ,-= + log + II f,7, '11 ,.-~ ] P(dco) < 

Given co e/2, we partition M into unstable manifolds IV',',, such that the IV,',', 
containing x is 

. . . .  { } ,,tx~= y~M: l imsup l logd( ( f  ) , ,x , ( f  " ) , , , y )<0  

One can construct an f-invariant  Borel set A c~2 x M, with/~(A) = 1 such 
that, if (co, x)sA,  W'~,(x) is the image of E"(co, x) by a C ~'~ injective 
immersion. 4 The proof  of the above results can be obtained by the methods 
of Ruelle ~17~ as noted by Liu. ~14~ 

The SRB condition for the measure/~ is, roughly speaking, that the 
conditional measures on the unstable manifolds (co, W , ' / , ) c D x M  be 
absolutely continuous with respect to the Riemann measure. Technically, 
however, one cannot directly define conditional measures 5 on the (co, W~(,). 
This is because they usually do not form a measurable partition o f /2  x M 
(each IV,',', may be folded over upon itself so that its closure is M). One 
defines a local unstable manifold W,'~,(x, local) to be the graph of a smooth 
map from an open neighborhood of x in E'(co, x) to E"(co, x) • It is then 
possible to define measurable partitions of s x M into sets (co, S), where S 
is an open subset of a local unstable manifold (for its induced topology). 
If the conditional measures of/~ on the (co, S) are absolutely continuous 
with respect to the Riemann measure of the unstable manifolds, then/~ is 
said to satisfy the SRB condition. 

We can now state two results of the ergodic theory of random differen- 
tiable dynamical systems, which we shall use later in the discussion of 
entropy production (for the proofs we refer to the original papers). 

T h e o r e m  1.1. I f r~> l  and 

f P(dco) log + IIf,,,llc' ~ +oo 

4 The class C t'' consists of Ihnctions with Lipschitz-continuous first-order derivatives. 
For the theory of conditional measures associated with measurable partitions see Rohlin) t~'~ 
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then the fiber entropy [ =condit ional  entropy of (p, f )  with respect to the 
projection ~z: D x M --* D]  satisfies 

h(tJ) <'-. f l.t(do-~ dx) ~, )Ji'tog, x) mU'(oo, x) 
i: 2 ~l~ > 0 

This was first proved for a single C I map (i.e., Q reduced to one 
point)/18~ For  the extension to the present situation see Bahnmfiller and 
Bogenschiitz c2~'6 (their paper gives a history of related results). 

Theorem 1.2. I f r / > 2 a n d  

f P(dog) [log + II s c + log + II f . ,  111,.~] ~ + ~  

and if p satisfies the SRB condition, then 

h(p)= f p(do.~dx) ~" 2"'(w,x)m"~(og, x) 
i: ) m  > (1 

In the case of a single map, the above equality is known as Pesh~'s 
formula, and it was shown to follow from the SRB condition by Ledrappier 
and Strelcyn/ljl  (In fact Pesin's formula is equivalent to the SRB condi- 
tion, as proved by Ledrappier and Young. ~12p) The generalization to 
random dynamical systems of  the result of Ledrappier and Strelcyn is due 
to Liu/141 Liu's assumption that D is Polish allows him to apply Lusin's 
Theorem 7 to connect arguments of abstract measure theory (measurable 
partitions of Lebesgue spaces) and the topology of the problem. 

1.4. T ime  Reversal 

The measure p is invariant under f ~:(co.x)r-~(r Jog, f,~,.v). The 
fiber entropy computed with respect t o f -  i is again h(p). [To  see this, one 
can, for instance, use the fact that the relative entropies of (p, f )  and 
(/t, f ]) with respect to the projection f2 x M ---, f2 are the same.] It follows 

6 A gap in ref. 2 is fixed in ref. 1. Note that for Theorem 1.1, I2 need no t  be Polish, and the 
f , ,  are not  required to be difl 'eomorphisms (it suffices, as done in ref. 18, to assume that they 
are C I maps).  

7To the effect that a measurable function is in fact cont inuous  outside of  a set of small 
measure. More  precisely, let E be a Polish space. F a topological space with countable base, 
l+ a (Borel, bounded)  positive measure  on E. and J" E---, F a Borel map. Then there i s f e q u a l  
it-a.e, to .[~ and for each e > 0 there is a compact  set K c E such that p[ E \ K )  <<. c and f l K 
is continuous.  
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from the definition that the Lyapunov exponents associated with f - ~  are 
the --2~i~(~o,x), with multiplicity mCg~(~o,x). The unstable manifolds 
associated with f ~ are the stable manifolds associated with f (we shall not 
use them). 

2. E N T R O P Y  P R O D U C T I O N  

Keeping the assumptions of Sections 1, we let J,,, denote the absolute 
value of the Jacobian off,,, with respect to some Riemann metric. If p is any 
(Borel) probability measure on Q x M, we may define the entropy produc- 
tion er(p) by 

el.(p ) = -- f p(do) dx ) log J,,,(x) (2.1) 

We shall use this definition only when 7~p = P (where 7~ is the projection 
g2 x M--+ Q). We have then 

ler(P)l ~< f P(drn) sup Ilog J,,,(x)l ~< 
.x + 

L e m m a  2.1. The entropy production er(lZ) for thef-invariant prob- 
ability measure p is independent of the choice of Riemann metric on M, and 

el( p ) = - f  l+(doJ dx) Y+ 2<i~(~o, x) m < ~ x) 
i 

This expression of el(p) in terms of the Lyapunov exponents follows 
from the multiplicative ergodic theorem, and implies independence of the 
choice of metric. | 

T h e o r e m  2.2. If thef-invariant probability measure l+ satisfies the 
SRB condition, then el(i+)>10. 

By Lemma 2.1, we have 

er0+) = - f  t~(do.~ dx) y, ,~"(oJ, x)m'*'(co, x) 
i 

= h ( P ) - I I + ( d ~ d x )  ~ 21i'(co, x) m<i~(o.~,x) 
i :  ,;c+p > (I 

i :  ~Ub < (I 
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so that, by Theorem 1.2, 

et-(p)=-[h(~)-f~(dcodx) Y t2'"(co, x)m'"(m,x)l 1 
i: ).lit < 0 

If /~, J. denote the fiber entropy and Lyapunov exponents, respectively, 
for the time-reversed system (i.e., when f is replaced by f - l ,  see end of 
Section 1 ), we have thus 

i :  2 ( i l  > 0 

Finally, Theorem 1.1 applied to the time-reversed system gives er(/~) >~ 0. l 

C o m m e n t .  If the probability measure p is absolutely continuous 
with respect to the Riemann volume on M, one expects a limit/~ o f f * p  
when k--, +oo to be smooth along unstable directions, i.e., to be an SRB 
measure. If we accept that (2.1) represents the physical entropy production 
(see below), then Theorem 2.2 means that the physical entropy production 
is nonnegative. 

2.1. Relation of ef (p)  with Statistical Mechanical Entropy 

For any (Borel) probability measure p on f2 x M, such that 7rp = P, we 
have the (P-a.e. unique) disintegration (p,,,) .... Q, where the p,,, are prob- 
ability measures on M, and 

p(&o dx) = P(dco) p,,,(dx) 

We shall use in a moment the fact that s 

s We have indeed 

( fp)(&O dx) = P(&n) x (f~ ,,,,p~ ,,,,)(dx) 

f (J?~) (d~o dx) q~(o~, x) = f p(d(,~ dx) q~(rcu,f,,x) 

= f P[doJ) p,,,[dx) q~(rtn.f,,x) 

= f P(~k~)) (f,,p,,,){dx) q~ir~o, x) 

= f  P(dc+J) (.1~. ',.,Pr ,,,,)(dx) ~(co, x) 

(2.2) 
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Let us assume that the p,, are absolutely continuous with respect to the 
Riemann volume on M. We write then p,,,(dx) = p,,(x) dx, where p,,, is the 
density of p,,, with respect to the Riemann volume element dx. Interpreting 
dx as phase-space volume element, we define the entropy 

S(p,,A = - f  dx p,,(x) log p,,,(x) 

(which is ~< log vol M). The entropy corresponding to p is then the average 

S,, = f P(dog) S(p,,,) = - f  p(do_~ dx)log p,,,(x) 

and - ~ ~< $1, <~ log vol M. 
Note that 

(f,,p,,,)(dx) = P,,,(f ,7, ~x) dx 
J,,,( f ,,, ix) 

Using (2.2), thus yields 

(fp)(do) dx) = P(dw) x p~ ,,,,((f-i),,, x) j _,,,,((f -t),,, x) dx 

where we have written ] =  1/J. Therefore 

S/i, = - I  (fp)(do.~ dx) [log p~ , , , ( f  ,~, Ix) + log Jr ,,,,(f ,7, Ix)" ] 

= -- f  p(dco dx) {log p,,,[ ( f- ' )~, , ,  f , , x ]  + log J,,,[ ( f  ')~,,, f , , x ] }  

= - f  p(dco dx) [log p,,,(x) + log ],,,(x)] 

so that 

t" 
- [S / i , -  s,,] = j p(dco dx) log J,,,(x) (2.3) 

This expression is minus the entropy put into the system in one time step, 
which is equal to the entropy pumped out of the system or produced by the 
system. 
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The express ion (2.3) agrees with the express ion (2.1) pos tu l a t ed  for the 
en t ropy  produc t ion .  This  justifies our  defini t ion in a special  case, and  in 
more  general  cases ob ta ined  by  sui table  limits. We  are thus led to 
invest igate the t opo logy  of  p robab i l i t y  measures  It such that  rtlt = P. 

2.2. P-Vague Topology 

Let us define 

E =  {/l:/~ is a Borel p robab i l i t y  measure  on ,(2 x M and lr/~ = P} 

and 

~UA'h(P) = I a(dw dx) $(x) 
A x M 

where  A is a P -measu rab le  subset  of  g2, and  ~b a con t inuous  funct ion 
M--* C. We call P-vague  t opo logy  the coarses t  t opo logy  on E for which all 
the functions ~uf~, are cont inuous .  '~ 

P r o p o s i t i o n  2 .3 .  Wi th  respect  to the P -vague  topo logy ,  E is 
met r izab le  compact .  

In o rder  to p rove  this, we shall  first replace ,Q by  a met r izab le  c ompa c t  
space. This  is poss ible  because  on a Pol ish  space ,Q there is a met r izab le  
c om pac t  t opo logy  which gives the same Borel sets. ~'~ More  s imply we can 
use the fact that  a Pol ish space is h o m e o m o r p h i c  to a coun tab le  intersec- 
t ion of  open sets in a met r izab le  c o m p a c t  space. 

N o w  that  g2 • M is met r izab le  compac t ,  the Borel measures  coincide  
with the Radon  measures,  and  the set of  all p robab i l i t y  measures  on ~ x M 
with the vague t opo logy  '~ is met r izab le  compact .  The  subset  E of  p robab i l -  
ity measures  such that  g/~ = P is vaguely  closed, and  E is thus met r izab le  
compac t  for the vague topology.  We are going to see tha t  this vague  topol -  
ogy on E coincides  with the P-vague  t opo logy  defined above.  

'~ Given a finite number of pairs (A I , tkt) ..... (A,,, ~k,,), and ~:>0. let 

N = { It ~ E: [ ~P i~,l,,(lt ) - tF..i,~, ,(lq~ )1 < ~: for i = 1 ..... n} 

Such sets form a basis ol neighborhoods of lq~ E for the P-wlgue topology. 
~" The vague topology on measures on the compact set -Q • M is the topology or" pointwise 

convergence on the space r6(.Q • M) of continuous functions. In other words, the vague 
topology is the w*-topology of the dual ~6(.Q • M)*. 
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Let us show that the P-vague topology on E is coarser than the vague 
topology. It suffices to prove that 

N =  {p �9 E: I ~A~(/z)- ~A,~(ao)l <e} 

contains a vague neighborhood of Po in E. We may assume ~b :~0 and 
choose a continuous function ~b:/2--+ R so that it is close to the charac- 
teristic function of A in the L~(P) norm: 

E 

II ~ - x.~ II L' < - -  
3 I1~11 

where II~ll is the uniform (=sup )  norm of 4). Then 

la(,/, |  e..,4,(a)l = fa(do2 d x ) [  $(o2)--Xn(~o)] $(x) 

~< I1,~11- I I r  ~<e/3 

The vague neighborhood of Po defined by 

{~ eE: II,(O | ~) -~,otO |162 ~< e/3} 

is then contained in N as announced. 
The P-vague topology separates points of E and is coarser than the 

vague topology, for which E is compact. Therefore the P-vague and the 
vague topology coincide on E, and the proposition follows. | 

Proposition 2.4. If p""~ tends to p for the P-vague topology, then 

,,!i_m f p'""(dcodx) logJ,,,(x)=f l4do~d.x')logJ,,,(x) 

As in the previous proof, we may t ake /2  to be compact metrizable. 
We apply Lusin's theorem to the measure [ 1 + 1(o9)] P(&o), where l (co)= 
sup,. IlogJ,, ,(x)[,  and to the map o9--+ log J,,,(.) o f / 2  to Cg(M) (space of 
continuous functions on M, with the sup-norm). We obtain thus a compact 
set K c  g2 with P(K) >I 1 - e, JmK P(do~) l(~o) ~< e, and (~o, x) ~ log J,,,(x) 
continuous on K x M. The restriction of pO,,I to K • M tends vaguely to the 
restriction o fp  to K x M (this results from the proof of Proposition 2.3 with 
s replaced by K); therefore 

f x • M P~ d~ dx  ) log ],,,( x ) ~ f K • M I't( d~ dx  ) log ],,,( x ) 
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and 

It~\K~ • g p~"'~(doJ dx) log J,,,(x) <~ fO\K P(doJ) l(o9) < e 

~c /~(do~dx) log],,,(x) <~2 P(dco) l ( co )<e  
. Q \ K  ) x A4  \ K  

Since e is arbitrarily small, the proposition follows. II 

T h e o r e m  2.5. Let p ( d c o d x ) =  P(dtn)p,,(dx). Assume that the p,,, 
are absolutely continuous with respect to the Riemann volume, and that 
S,  > - o z .  If/~ is any P-vague limit of the measures p~"') = ,t 1/m~ , r--.k ~ . . . .  = o~ j .kp,  
then er(iZ ) >~ O. 

By Proposition 2.4 and Eq. (2.3) we have 

1 ,,,- I 
e '"" Z e/ ( / l )=  lira r(p ) =  lira ~ o " 

= lira 1 [ - S t " , ,  + S,,] 
m ~ ~. D I  

Since S ,  is finite and St,,, p bounded above by log vol M, the limit in the 
right-hand side is >~0, as announced. | 

3. THE I.I .D. CASE 

To describe the case where the f,'~,, are independent identically dis- 
tributed (see ref. 13, and, for background, ref. 8), we write m = (ai),-~z with 
ai~A, so that D = A  z. We also write P ( d m ) = I - I ~ z p ( d c t ~ ) ,  where p is a 
probability measure on A. We take f , ,  to depend only on ao and write 
f , ,  =f~,,~. Our standing assumptions of Section 1 are thus replaced by the 
following. 

�9 A is a Polish space, p a Borel probability measure on A (we denote 
by r the shift on A z). 

�9 M is a compact C ~ manifold. 

�9 cr is a Borel map A ~ D i f f " ( M ) ,  r>~2. 

�9 If Jl~,) is the Jacobian o f f ~  with respect to some Riemann metric, 
and /(~)=sup, .  [log Jt~(x)[, then I ~ L l ( p ) .  
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If the probability measure p on 12 x M has projection np = P on g2, we 
have the disintegration p(do)dx)= P(do))p,,,(dx). We denote by E < the set 
of those p such that p,,, does not depend on the fitture, i.e., p,,, depends only 
on ~; for i ~ 0. Define also the maps s: 12 x M ~ A x M, t: A x M ~ )14, and 
0 = ts: [2 x M---, M such that 

(co, x) --2-, (O~o, x) ~-,  x, (co, x) o , x 

and let 

and 

m = 0 ~ ,  m ,  = 

It is readily seen that i fp  e E <, then the image offp by s is of the form 

(sJh)(do~, dx) =p(do~, ) ml(dx) 

f 

m, = J p(doO f ~ d n  (3.1) 

Also, J E  < c E -< and the entropy production for p er iE `< has the expression 

er(P) = f p(do~) m(dx) log ]~,(x) (3.2) 

P r o p o s i t i o n  3 . 1 .  Let  p eJE ~, and assume that m = 0p has density 
t._n with respect to the Riemann volume element dx, i.e., m(dx)=re(x)dx. 

(a) The density _m(~) o f f~ )m and the density ~ j  of Ofm are given by 

m,,,(x) = m ( f  l-~l x) J~( f  gl x) 

m_l(x) = f p(doO m_(~(x) 

(b) If S (~)  = - ~  dx nj(x) log hi(x) > - o r ,  then 

er(P) = -- f  p(dct) S(m_c~ ) + S( ~l ) 

(c)  Let  6 (c~ ,x )=_m(~ /_m~(x) ;  then 

f p ( d o O S ( ~ , ) - S ( m _ t J = f m , ( d x ) I - f  p(d~)~(o~,x, log~(c~,x) 1 <~0 



950 Ruelle 

(d) In particular, i f m = m ~  (i.e., if/t isf-invariant), we have 

e/>~ 0 

and e r>  0 unless _m~.~ =_m(x) a.e. with respect to p(doQ n_l(x)dx.'t 

Part (a) follows from the definitions and (3.1). We have 

- f  p(do:) S(m_,~,) + S(m_) = ~ p( da) [ - S(_mt~,) + S(m)] 

= ~ p(da) J" dx _m, ~,(x)log ] , ,  ,(x) 

and (b) follows from (3.2). Note that we have ~ p(da) 6(a, x) = 1; therefore 

f p(da) S(_m,~,) - S(_m, ) = f p(doQ S(6(o~, �9 ) n_, ,(. )) - S(~,, ) 

but ~ p(d~) 6(e, x) = 1 also implies 

I p ( d o ~ ) 6 ( o ~ , x ) l o g ~ I  p(doQlogl <~0 

proving (c). From (b) and (c) we obtain eta>0 when m = m ) ,  and in fact 
e />  0 unless 6(~, x) [equal to Ln~(x)/m(x)] is 1 almost everywhere. This 
proves (d). II 

R e m a r k s .  (a) While in the general case (Section 2 ) f a n d f  ~ play 
symmetric roles, this symmetry is broken in the present section because 
( f  ~),~,,~ ~ (f~,)) 

(b) From Proposition 3.1(b), (c) it is clear that, in the steady state, 
the entropy produced by the system is equal to minus the entropy that it 
extracts from the heat bath. 
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